OCR MEI Further Mechanics Minor 2024 June — Question 5

Exam BoardOCR MEI
ModuleFurther Mechanics Minor (Further Mechanics Minor)
Year2024
SessionJune
TopicCentre of Mass 1

5 A uniform lamina OABC is in the shape of a trapezium where O is the origin of the coordinate system in which the points \(\mathrm { A } , \mathrm { B }\) and C have coordinates \(( 120,0 )\), \(( 60,90 )\) and \(( 30,90 )\) respectively (see diagram). The units of the axes are centimetres.
\includegraphics[max width=\textwidth, alt={}, center]{0a790ad0-7eda-40f1-9894-f156766ae46f-5_561_720_404_242} The centre of mass of the lamina lies at ( \(\mathrm { x } , \mathrm { y }\) ).
  1. Show that \(\bar { x } = 54\) and determine the value of \(\bar { y }\). The lamina is placed horizontally so that it rests on three supports, whose points of contact are at \(\mathrm { B } , \mathrm { C }\) and D , where D lies on the edge OA and has coordinates \(( d , 0 )\).
  2. Determine the range of values of \(d\) for the lamina to rest in equilibrium. It is now given that \(d = 63\), and that the lamina has a weight of 100 N .
  3. Determine the forces exerted on the lamina by each of the supports at \(\mathrm { B } , \mathrm { C }\) and D .