OCR MEI Further Pure Core 2023 June — Question 17

Exam BoardOCR MEI
ModuleFurther Pure Core (Further Pure Core)
Year2023
SessionJune
TopicFirst order differential equations (integrating factor)

17 Two similar species, X and Y , of a small mammal compete for food and habitat. A model of this competition assumes, in a particular area, the following.
  • In the absence of the other species, each species would increase at a rate proportional to the number present with the same constant of proportionality in each case.
  • The competition reduces the rate of increase of each species by an amount proportional to the number of the other species present.
So if the numbers of species X and Y present at time \(t\) years are \(x\) and \(y\) respectively, the model gives the differential equations
\(\frac { d x } { d t } = k x - a y\) and \(\frac { d y } { d t } = k y - b x\),
where \(k , a\) and \(b\) are positive constants.
    1. Show that the general solution for \(x\) is \(x = A e ^ { ( k + n ) t } + B e ^ { ( k - n ) t }\), where \(n = \sqrt { a b }\) and \(A\) and \(B\) are arbitrary constants.
    2. Hence find the general solution for \(y\) in terms of \(A , B , k , n , a\) and \(t\). Observations suggest that suitable values for the model are \(k = 0.015 , a = 0.04\) and \(b = 0.01\). You should use these values in the rest of this question.
  1. When \(t = 0\), the numbers present of species X and Y in this area are \(x _ { 0 }\) and \(y _ { 0 }\) respectively.
    1. Show that \(\mathrm { x } = \frac { 1 } { 2 } \left( \mathrm { x } _ { 0 } - 2 \mathrm { y } _ { 0 } \right) \mathrm { e } ^ { 0.035 \mathrm { t } } + \frac { 1 } { 2 } \left( \mathrm { x } _ { 0 } + 2 \mathrm { y } _ { 0 } \right) \mathrm { e } ^ { - 0.005 \mathrm { t } }\).
    2. Hence show that \(y = \frac { 1 } { 4 } \left( x _ { 0 } + 2 y _ { 0 } \right) e ^ { - 0.005 t } - \frac { 1 } { 4 } \left( x _ { 0 } - 2 y _ { 0 } \right) e ^ { 0.035 t }\).
  2. Use initial values \(x _ { 0 } = 500\) and \(y _ { 0 } = 300\) with the results in part (b) to determine what the model predicts for each of the following questions.
    1. What numbers of each species will be present after 25 years?
    2. In this question you must show detailed reasoning. When will the numbers of the two species be equal?
    3. Does either species ever disappear from the area? Justify your answer.
  3. Different initial values will apply in other areas where the two species compete, but previous studies indicate that one species or the other will eventually dominate in any given area.
    1. Identify a relationship between \(x _ { 0 }\) and \(y _ { 0 }\) where the model does not predict this outcome.
    2. Explain what the model predicts in the long term for this exceptional case.