A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Sequences and series, recurrence and convergence
Q3
OCR MEI Further Pure Core 2023 June — Question 3
Exam Board
OCR MEI
Module
Further Pure Core (Further Pure Core)
Year
2023
Session
June
Topic
Sequences and series, recurrence and convergence
3
Using partial fractions and the method of differences, show that $$\frac { 1 } { 1 \times 3 } + \frac { 1 } { 2 \times 4 } + \frac { 1 } { 3 \times 5 } + \ldots + \frac { 1 } { \mathrm { n } ( \mathrm { n } + 2 ) } = \frac { 3 } { 4 } - \frac { \mathrm { an } + \mathrm { b } } { 2 ( \mathrm { n } + 1 ) ( \mathrm { n } + 2 ) }$$ where \(a\) and \(b\) are integers to be determined.
Deduce the sum to infinity of the series. $$\frac { 1 } { 1 \times 3 } + \frac { 1 } { 2 \times 4 } + \frac { 1 } { 3 \times 5 } + \ldots$$
This paper
(17 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
1
Q7
Q8
Q9
Q10
Q11
Q12
Q13
Q14
Q15
Q16
Q17