AQA FP2 2013 June — Question 6

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2013
SessionJune
TopicHyperbolic functions

6
  1. Show that \(\frac { 1 } { 5 \cosh x - 3 \sinh x } = \frac { \mathrm { e } ^ { x } } { m + \mathrm { e } ^ { 2 x } }\), where \(m\) is an integer.
  2. Use the substitution \(u = \mathrm { e } ^ { x }\) to show that $$\int _ { 0 } ^ { \ln 2 } \frac { 1 } { 5 \cosh x - 3 \sinh x } \mathrm {~d} x = \frac { \pi } { 8 } - \frac { 1 } { 2 } \tan ^ { - 1 } \left( \frac { 1 } { 2 } \right)$$