A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Hyperbolic functions
Q6
AQA FP2 2013 June — Question 6
Exam Board
AQA
Module
FP2 (Further Pure Mathematics 2)
Year
2013
Session
June
Topic
Hyperbolic functions
6
Show that \(\frac { 1 } { 5 \cosh x - 3 \sinh x } = \frac { \mathrm { e } ^ { x } } { m + \mathrm { e } ^ { 2 x } }\), where \(m\) is an integer.
Use the substitution \(u = \mathrm { e } ^ { x }\) to show that $$\int _ { 0 } ^ { \ln 2 } \frac { 1 } { 5 \cosh x - 3 \sinh x } \mathrm {~d} x = \frac { \pi } { 8 } - \frac { 1 } { 2 } \tan ^ { - 1 } \left( \frac { 1 } { 2 } \right)$$
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8