3 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by
$$u _ { 1 } = 2 , \quad u _ { n + 1 } = \frac { 5 u _ { n } - 3 } { 3 u _ { n } - 1 }$$
Prove by induction that, for all integers \(n \geqslant 1\),
$$u _ { n } = \frac { 3 n + 1 } { 3 n - 1 }$$
(6 marks)