AQA FP2 (Further Pure Mathematics 2) 2013 June

Question 1
View details
1
  1. Sketch on an Argand diagram the locus of points satisfying the equation $$| z - 6 \mathrm { i } | = 3$$
  2. It is given that \(z\) satisfies the equation \(| z - 6 \mathrm { i } | = 3\).
    1. Write down the greatest possible value of \(| z |\).
    2. Find the greatest possible value of \(\arg z\), giving your answer in the form \(p \pi\), where \(- 1 < p \leqslant 1\).
Question 2
View details
2
    1. Sketch on the axes below the graphs of \(y = \sinh x\) and \(y = \cosh x\).
    2. Use your graphs to explain why the equation $$( k + \sinh x ) \cosh x = 0$$ where \(k\) is a constant, has exactly one solution.
  1. A curve \(C\) has equation \(y = 6 \sinh x + \cosh ^ { 2 } x\). Show that \(C\) has only one stationary point and show that its \(y\)-coordinate is an integer.
    \includegraphics[max width=\textwidth, alt={}, center]{53d742f4-923b-478c-8ae6-ada6c0bb4a7e-2_560_704_1416_171}
    \includegraphics[max width=\textwidth, alt={}, center]{53d742f4-923b-478c-8ae6-ada6c0bb4a7e-2_560_711_1416_964}
Question 3
View details
3 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by $$u _ { 1 } = 2 , \quad u _ { n + 1 } = \frac { 5 u _ { n } - 3 } { 3 u _ { n } - 1 }$$ Prove by induction that, for all integers \(n \geqslant 1\), $$u _ { n } = \frac { 3 n + 1 } { 3 n - 1 }$$ (6 marks)
Question 4
View details
4
  1. Given that \(\mathrm { f } ( r ) = r ^ { 2 } \left( 2 r ^ { 2 } - 1 \right)\), show that $$\mathrm { f } ( r ) - \mathrm { f } ( r - 1 ) = ( 2 r - 1 ) ^ { 3 }$$
  2. Use the method of differences to show that $$\sum _ { r = n + 1 } ^ { 2 n } ( 2 r - 1 ) ^ { 3 } = 3 n ^ { 2 } \left( 10 n ^ { 2 } - 1 \right)$$ (4 marks)
Question 5
View details
5 The cubic equation $$z ^ { 3 } + p z ^ { 2 } + q z + 37 - 36 \mathrm { i } = 0$$ where \(p\) and \(q\) are constants, has three complex roots, \(\alpha , \beta\) and \(\gamma\). It is given that \(\beta = - 2 + 3 \mathrm { i }\) and \(\gamma = 1 + 2 \mathrm { i }\).
    1. Write down the value of \(\alpha \beta \gamma\).
    2. Hence show that \(( 8 + \mathrm { i } ) \alpha = 37 - 36 \mathrm { i }\).
    3. Hence find \(\alpha\), giving your answer in the form \(m + n \mathrm { i }\), where \(m\) and \(n\) are integers.
  1. Find the value of \(p\).
  2. Find the value of the complex number \(q\).
Question 6
View details
6
  1. Show that \(\frac { 1 } { 5 \cosh x - 3 \sinh x } = \frac { \mathrm { e } ^ { x } } { m + \mathrm { e } ^ { 2 x } }\), where \(m\) is an integer.
  2. Use the substitution \(u = \mathrm { e } ^ { x }\) to show that $$\int _ { 0 } ^ { \ln 2 } \frac { 1 } { 5 \cosh x - 3 \sinh x } \mathrm {~d} x = \frac { \pi } { 8 } - \frac { 1 } { 2 } \tan ^ { - 1 } \left( \frac { 1 } { 2 } \right)$$
Question 7
View details
7
    1. Show that $$\frac { \mathrm { d } } { \mathrm {~d} u } \left( 2 u \sqrt { 1 + 4 u ^ { 2 } } + \sinh ^ { - 1 } 2 u \right) = k \sqrt { 1 + 4 u ^ { 2 } }$$ where \(k\) is an integer.
    2. Hence show that $$\int _ { 0 } ^ { 1 } \sqrt { 1 + 4 u ^ { 2 } } \mathrm {~d} u = p \sqrt { 5 } + q \sinh ^ { - 1 } 2$$ where \(p\) and \(q\) are rational numbers.
  1. The arc of the curve with equation \(y = \frac { 1 } { 2 } \cos 4 x\) between the points where \(x = 0\) and \(x = \frac { \pi } { 8 }\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
    1. Show that the area \(S\) of the curved surface formed is given by $$S = \pi \int _ { 0 } ^ { \frac { \pi } { 8 } } \cos 4 x \sqrt { 1 + 4 \sin ^ { 2 } 4 x } \mathrm {~d} x$$
    2. Use the substitution \(u = \sin 4 x\) to find the exact value of \(S\).
Question 8
View details
8
    1. Use de Moivre's theorem to show that $$\cos 4 \theta = \cos ^ { 4 } \theta - 6 \cos ^ { 2 } \theta \sin ^ { 2 } \theta + \sin ^ { 4 } \theta$$ and find a similar expression for \(\sin 4 \theta\).
    2. Deduce that $$\tan 4 \theta = \frac { 4 \tan \theta - 4 \tan ^ { 3 } \theta } { 1 - 6 \tan ^ { 2 } \theta + \tan ^ { 4 } \theta }$$
  1. Explain why \(t = \tan \frac { \pi } { 16 }\) is a root of the equation $$t ^ { 4 } + 4 t ^ { 3 } - 6 t ^ { 2 } - 4 t + 1 = 0$$ and write down the three other roots in trigonometric form.
  2. Hence show that $$\tan ^ { 2 } \frac { \pi } { 16 } + \tan ^ { 2 } \frac { 3 \pi } { 16 } + \tan ^ { 2 } \frac { 5 \pi } { 16 } + \tan ^ { 2 } \frac { 7 \pi } { 16 } = 28$$