AQA FP2 2013 June — Question 4

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2013
SessionJune
TopicSequences and series, recurrence and convergence

4
  1. Given that \(\mathrm { f } ( r ) = r ^ { 2 } \left( 2 r ^ { 2 } - 1 \right)\), show that $$\mathrm { f } ( r ) - \mathrm { f } ( r - 1 ) = ( 2 r - 1 ) ^ { 3 }$$
  2. Use the method of differences to show that $$\sum _ { r = n + 1 } ^ { 2 n } ( 2 r - 1 ) ^ { 3 } = 3 n ^ { 2 } \left( 10 n ^ { 2 } - 1 \right)$$ (4 marks)