Given that
$$\frac { 1 } { r ( r + 1 ) ( r + 2 ) } = \frac { A } { r ( r + 1 ) } + \frac { B } { ( r + 1 ) ( r + 2 ) }$$
show that \(A = \frac { 1 } { 2 }\) and find the value of \(B\).
Use the method of differences to find
$$\sum _ { r = 10 } ^ { 98 } \frac { 1 } { r ( r + 1 ) ( r + 2 ) }$$
giving your answer as a rational number.
A circle \(C\) in the Argand diagram has equation
$$| z + 5 - \mathrm { i } | = \sqrt { 2 }$$
Write down its radius and the complex number representing its centre.
A half-line \(L\) in the Argand diagram has equation
$$\arg ( z + 2 \mathrm { i } ) = \frac { 3 \pi } { 4 }$$
Show that \(z _ { 1 } = - 4 + 2 \mathrm { i }\) lies on \(L\).
Show that \(z _ { 1 } = - 4 + 2 \mathrm { i }\) also lies on \(C\).
Hence show that \(L\) touches \(C\).
Sketch \(L\) and \(C\) on one Argand diagram.
The complex number \(z _ { 2 }\) lies on \(C\) and is such that \(\arg \left( z _ { 2 } + 2 \mathrm { i } \right)\) has as great a value as possible.
Indicate the position of \(z _ { 2 }\) on your sketch.
Use the definition \(\cosh x = \frac { 1 } { 2 } \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right)\) to show that \(\cosh 2 x = 2 \cosh ^ { 2 } x - 1\).
(2 marks)
The arc of the curve \(y = \cosh x\) between \(x = 0\) and \(x = \ln a\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Show that \(S\), the surface area generated, is given by
$$S = 2 \pi \int _ { 0 } ^ { \ln a } \cosh ^ { 2 } x \mathrm {~d} x$$
Hence show that
$$S = \pi \left( \ln a + \frac { a ^ { 4 } - 1 } { 4 a ^ { 2 } } \right)$$
6 By using the substitution \(u = x - 2\), or otherwise, find the exact value of
$$\int _ { - 1 } ^ { 5 } \frac { \mathrm {~d} x } { \sqrt { 32 + 4 x - x ^ { 2 } } }$$
Explain why \(n ( n + 1 )\) is a multiple of 2 when \(n\) is an integer.
Given that
$$\mathrm { f } ( n ) = n \left( n ^ { 2 } + 5 \right)$$
show that \(\mathrm { f } ( k + 1 ) - \mathrm { f } ( k )\), where \(k\) is a positive integer, is a multiple of 6 .
Prove by induction that \(\mathrm { f } ( n )\) is a multiple of 6 for all integers \(n \geqslant 1\).
Expand
$$\left( z + \frac { 1 } { z } \right) \left( z - \frac { 1 } { z } \right)$$
Hence, or otherwise, expand
$$\left( z + \frac { 1 } { z } \right) ^ { 4 } \left( z - \frac { 1 } { z } \right) ^ { 2 }$$
Use De Moivre's theorem to show that if \(z = \cos \theta + \mathrm { i } \sin \theta\) then
$$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta$$
Write down a corresponding result for \(z ^ { n } - \frac { 1 } { z ^ { n } }\).
Hence express \(\cos ^ { 4 } \theta \sin ^ { 2 } \theta\) in the form
$$A \cos 6 \theta + B \cos 4 \theta + C \cos 2 \theta + D$$
where \(A , B , C\) and \(D\) are rational numbers.