AQA FP2 (Further Pure Mathematics 2) 2012 January

Question 1
View details
1
  1. Show, by means of a sketch, that the curves with equations $$y = \sinh x$$ and $$y = \operatorname { sech } x$$ have exactly one point of intersection.
  2. Find the \(x\)-coordinate of this point of intersection, giving your answer in the form \(a \ln b\).
Question 2
View details
2
  1. Draw on an Argand diagram the locus \(L\) of points satisfying the equation \(\arg z = \frac { \pi } { 6 }\).
    (1 mark)
    1. A circle \(C\), of radius 6, has its centre lying on \(L\) and touches the line \(\operatorname { Re } ( z ) = 0\). Draw \(C\) on your Argand diagram from part (a).
    2. Find the equation of \(C\), giving your answer in the form \(\left| z - z _ { 0 } \right| = k\).
    3. The complex number \(z _ { 1 }\) lies on \(C\) and is such that \(\arg z _ { 1 }\) has its least possible value. Find \(\arg z _ { 1 }\), giving your answer in the form \(p \pi\), where \(- 1 < p \leqslant 1\).
Question 3
View details
3 A curve has cartesian equation $$y = \frac { 1 } { 2 } \ln ( \tanh x )$$
  1. Show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { \sinh 2 x }$$
  2. The points \(A\) and \(B\) on the curve have \(x\)-coordinates \(\ln 2\) and \(\ln 4\) respectively. Find the arc length \(A B\), giving your answer in the form \(p \ln q\), where \(p\) and \(q\) are rational numbers.
Question 4
View details
4 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by $$u _ { 1 } = \frac { 3 } { 4 } \quad u _ { n + 1 } = \frac { 3 } { 4 - u _ { n } }$$ Prove by induction that, for all \(n \geqslant 1\), $$u _ { n } = \frac { 3 ^ { n + 1 } - 3 } { 3 ^ { n + 1 } - 1 }$$
Question 5
View details
5 Find the smallest positive integer values of \(p\) and \(q\) for which $$\frac { \left( \cos \frac { \pi } { 8 } + \mathrm { i } \sin \frac { \pi } { 8 } \right) ^ { p } } { \left( \cos \frac { \pi } { 12 } - \mathrm { i } \sin \frac { \pi } { 12 } \right) ^ { q } } = \mathrm { i }$$
Question 6
View details
6
  1. Express \(7 + 4 x - 2 x ^ { 2 }\) in the form \(a - b ( x - c ) ^ { 2 }\), where \(a , b\) and \(c\) are integers.
  2. By means of a suitable substitution, or otherwise, find the exact value of $$\int _ { 1 } ^ { \frac { 5 } { 2 } } \frac { \mathrm {~d} x } { \sqrt { 7 + 4 x - 2 x ^ { 2 } } }$$
Question 7
View details
7 The numbers \(\alpha , \beta\) and \(\gamma\) satisfy the equations $$\begin{aligned} & \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = - 10 - 12 \mathrm { i }
& \alpha \beta + \beta \gamma + \gamma \alpha = 5 + 6 \mathrm { i } \end{aligned}$$
  1. Show that \(\alpha + \beta + \gamma = 0\).
  2. The numbers \(\alpha , \beta\) and \(\gamma\) are also the roots of the equation $$z ^ { 3 } + p z ^ { 2 } + q z + r = 0$$ Write down the value of \(p\) and the value of \(q\).
  3. It is also given that \(\alpha = 3 \mathrm { i }\).
    1. Find the value of \(r\).
    2. Show that \(\beta\) and \(\gamma\) are the roots of the equation $$z ^ { 2 } + 3 \mathrm { i } z - 4 + 6 \mathrm { i } = 0$$
    3. Given that \(\beta\) is real, find the values of \(\beta\) and \(\gamma\).
Question 8
View details
8
  1. Write down the five roots of the equation \(z ^ { 5 } = 1\), giving your answers in the form \(\mathrm { e } ^ { \mathrm { i } \theta }\), where \(- \pi < \theta \leqslant \pi\).
  2. Hence find the four linear factors of $$z ^ { 4 } + z ^ { 3 } + z ^ { 2 } + z + 1$$
  3. Deduce that $$z ^ { 2 } + z + 1 + z ^ { - 1 } + z ^ { - 2 } = \left( z - 2 \cos \frac { 2 \pi } { 5 } + z ^ { - 1 } \right) \left( z - 2 \cos \frac { 4 \pi } { 5 } + z ^ { - 1 } \right)$$
  4. Use the substitution \(z + z ^ { - 1 } = w\) to show that \(\cos \frac { 2 \pi } { 5 } = \frac { \sqrt { 5 } - 1 } { 4 }\).