AQA FP1 2007 June — Question 9

Exam BoardAQA
ModuleFP1 (Further Pure Mathematics 1)
Year2007
SessionJune
TopicStraight Lines & Coordinate Geometry

9 [Figure 3, printed on the insert, is provided for use in this question.]
The diagram shows the curve with equation $$\frac { x ^ { 2 } } { 2 } + y ^ { 2 } = 1$$ and the straight line with equation $$x + y = 2$$ \includegraphics[max width=\textwidth, alt={}, center]{354cbeda-d84e-433a-8834-a6f20e7e9513-05_805_1499_863_267}
  1. Write down the exact coordinates of the points where the curve with equation \(\frac { x ^ { 2 } } { 2 } + y ^ { 2 } = 1\) intersects the coordinate axes.
  2. The curve is translated \(k\) units in the positive \(x\) direction, where \(k\) is a constant. Write down, in terms of \(k\), the equation of the curve after this translation.
  3. Show that, if the line \(x + y = 2\) intersects the translated curve, the \(x\)-coordinates of the points of intersection must satisfy the equation $$3 x ^ { 2 } - 2 ( k + 4 ) x + \left( k ^ { 2 } + 6 \right) = 0$$
  4. Hence find the two values of \(k\) for which the line \(x + y = 2\) is a tangent to the translated curve. Give your answer in the form \(p \pm \sqrt { q }\), where \(p\) and \(q\) are integers.
  5. On Figure 3, show the translated curves corresponding to these two values of \(k\). \end{table} \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Figure 2 (for use in Question 5)} \includegraphics[alt={},max width=\textwidth]{354cbeda-d84e-433a-8834-a6f20e7e9513-10_677_1056_886_466}
    \end{figure} \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Figure 3 (for use in Question 9)} \includegraphics[alt={},max width=\textwidth]{354cbeda-d84e-433a-8834-a6f20e7e9513-10_798_1488_1891_274}
    \end{figure}