CAIE P3 (Pure Mathematics 3) 2023 June

Question 1
View details
1 Solve the equation $$3 \mathrm { e } ^ { 2 x } - 4 \mathrm { e } ^ { - 2 x } = 5$$ Give the answer correct to 3 decimal places.
Question 2
View details
2
  1. Sketch the graph of \(y = | 2 x + 3 |\).
  2. Solve the inequality \(3 x + 8 > | 2 x + 3 |\).
Question 3
View details
3 Find the coefficient of \(x ^ { 3 }\) in the binomial expansion of \(( 3 + x ) \sqrt { 1 + 4 x }\).
Question 4
View details
4
  1. Show that the equation \(\sin 2 \theta + \cos 2 \theta = 2 \sin ^ { 2 } \theta\) can be expressed in the form $$\cos ^ { 2 } \theta + 2 \sin \theta \cos \theta - 3 \sin ^ { 2 } \theta = 0$$
  2. Hence solve the equation \(\sin 2 \theta + \cos 2 \theta = 2 \sin ^ { 2 } \theta\) for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).
Question 5 4 marks
View details
5 The equation of a curve is \(x ^ { 2 } y - a y ^ { 2 } = 4 a ^ { 3 }\), where \(a\) is a non-zero constant.
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 x y } { 2 a y - x ^ { 2 } }\).
  2. Hence find the coordinates of the points where the tangent to the curve is parallel to the \(y\)-axis. [4]
Question 6
View details
6 Relative to the origin \(O\), the points \(A , B\) and \(C\) have position vectors given by $$\overrightarrow { O A } = \left( \begin{array} { l } 2
1
3 \end{array} \right) , \quad \overrightarrow { O B } = \left( \begin{array} { l } 4
3
2 \end{array} \right) \quad \text { and } \quad \overrightarrow { O C } = \left( \begin{array} { r } 3
- 2
- 4 \end{array} \right) .$$ The quadrilateral \(A B C D\) is a parallelogram.
  1. Find the position vector of \(D\).
  2. The angle between \(B A\) and \(B C\) is \(\theta\). Find the exact value of \(\cos \theta\).
  3. Hence find the area of \(A B C D\), giving your answer in the form \(p \sqrt { q }\), where \(p\) and \(q\) are integers.
Question 7
View details
7 The variables \(x\) and \(y\) satisfy the differential equation $$\cos 2 x \frac { \mathrm {~d} y } { \mathrm {~d} x } = \frac { 4 \tan 2 x } { \sin ^ { 2 } 3 y }$$ where \(0 \leqslant x < \frac { 1 } { 4 } \pi\). It is given that \(y = 0\) when \(x = \frac { 1 } { 6 } \pi\).
Solve the differential equation to obtain the value of \(x\) when \(y = \frac { 1 } { 6 } \pi\). Give your answer correct to 3 decimal places.
Question 8
View details
8 Let \(\mathrm { f } ( x ) = \frac { 3 - 3 x ^ { 2 } } { ( 2 x + 1 ) ( x + 2 ) ^ { 2 } }\).
  1. Express \(\mathrm { f } ( x )\) in partial fractions.
  2. Hence find the exact value of \(\int _ { 0 } ^ { 4 } \mathrm { f } ( x ) \mathrm { d } x\), giving your answer in the form \(a + b \ln c\), where \(a , b\) and \(c\) are integers.
Question 9
View details
9 The constant \(a\) is such that \(\int _ { 0 } ^ { a } x \mathrm { e } ^ { - 2 x } \mathrm {~d} x = \frac { 1 } { 8 }\).
  1. Show that \(a = \frac { 1 } { 2 } \ln ( 4 a + 2 )\).
  2. Verify by calculation that \(a\) lies between 0.5 and 1 .
  3. Use an iterative formula based on the equation in (a) to determine \(a\) correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
Question 10
View details
10 The polynomial \(x ^ { 3 } + 5 x ^ { 2 } + 31 x + 75\) is denoted by \(\mathrm { p } ( x )\).
  1. Show that \(( x + 3 )\) is a factor of \(\mathrm { p } ( x )\).
  2. Show that \(z = - 1 + 2 \sqrt { 6 } \mathrm { i }\) is a root of \(\mathrm { p } ( z ) = 0\).
  3. Hence find the complex numbers \(z\) which are roots of \(\mathrm { p } \left( z ^ { 2 } \right) = 0\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.