4.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a11940cb-73a8-4f33-bfbc-73841320c1dc-07_515_415_210_758}
\captionsetup{labelformat=empty}
\caption{Figure 1}
\end{figure}
A uniform lamina of mass \(M\) is in the shape of a right-angled triangle \(O A B\). The angle \(O A B\) is \(90 ^ { \circ } , O A = a\) and \(A B = 2 a\), as shown in Figure 1.
- Prove, using integration, that the moment of inertia of the lamina \(O A B\) about the edge \(O A\) is \(\frac { 2 } { 3 } M a ^ { 2 }\).
(You may assume without proof that the moment of inertia of a uniform rod of mass \(m\) and length \(2 l\) about an axis through one end and perpendicular to the rod is \(\frac { 4 } { 3 } m l ^ { 2 }\).)
The lamina \(O A B\) is free to rotate about a fixed smooth horizontal axis along the edge \(O A\) and hangs at rest with \(B\) vertically below \(A\). The lamina is then given a horizontal impulse of magnitude \(J\). The impulse is applied to the lamina at the point \(B\), in a direction which is perpendicular to the plane of the lamina. Given that the lamina first comes to instantaneous rest after rotating through an angle of \(120 ^ { \circ }\), - find an expression for \(J\), in terms of \(M , a\) and \(g\).