OCR MEI M4 2016 June — Question 4

Exam BoardOCR MEI
ModuleM4 (Mechanics 4)
Year2016
SessionJune
TopicVariable Force

4 A raindrop falls from rest through a stationary cloud. The raindrop has mass \(m\) and speed \(v\) when it has fallen a distance \(x\). You may assume that resistances to motion are negligible.
  1. Derive the equation of motion $$m v \frac { \mathrm {~d} v } { \mathrm {~d} x } + v ^ { 2 } \frac { \mathrm {~d} m } { \mathrm {~d} x } = m g .$$ Initially the mass of the raindrop is \(m _ { 0 }\). Two different models for the mass of the raindrop are suggested.
    In the first model \(m = m _ { 0 } \mathrm { e } ^ { k _ { 1 } x }\), where \(k _ { 1 }\) is a positive constant.
  2. Show that $$v ^ { 2 } = \frac { g } { k _ { 1 } } \left( 1 - \mathrm { e } ^ { - 2 k _ { 1 } x } \right) ,$$ and hence state, in terms of \(g\) and \(k _ { 1 }\), the terminal velocity of the raindrop according to this first model. In the second model \(m = m _ { 0 } \left( 1 + k _ { 2 } x \right)\), where \(k _ { 2 }\) is a positive constant.
  3. By considering the expression obtained from differentiating \(v ^ { 2 } \left( 1 + k _ { 2 } x \right) ^ { 2 }\) with respect to \(x\), show that, for the second model, the equation of motion in part (i) may be written as $$\frac { d } { d x } \left[ v ^ { 2 } \left( 1 + k _ { 2 } x \right) ^ { 2 } \right] = 2 g \left( 1 + k _ { 2 } x \right) ^ { 2 } .$$ Hence find an expression for \(v ^ { 2 }\) in terms of \(g , k _ { 2 }\) and \(x\).
  4. Suppose that the models give the same value for the speed of the raindrop at the instant when it has doubled its initial mass. Find the exact value of \(\frac { k _ { 1 } } { k _ { 2 } }\), giving your answer in the form \(\frac { a } { b }\) where \(a\) and \(b\)
    are integers. are integers. \section*{END OF QUESTION PAPER}