OCR MEI M4 2016 June — Question 3

Exam BoardOCR MEI
ModuleM4 (Mechanics 4)
Year2016
SessionJune
TopicMoments

3 Fig. 3 shows a uniform rigid rod AB of length \(2 a\) and mass \(2 m\). The rod is freely hinged at A so that it can rotate in a vertical plane. One end of a light inextensible string of length \(l\) is attached to B . The string passes over a small smooth fixed pulley at C , where C is vertically above A and \(\mathrm { AC } = 6 a\). A particle of mass \(\lambda m\), where \(\lambda\) is a positive constant, is attached to the other end of the string and hangs freely, vertically below C . The rod makes an angle \(\theta\) with the upward vertical, where \(0 \leqslant \theta \leqslant \pi\). You may assume that the particle does not interfere with the rod AB or the section of the string BC . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3fdb2cff-0f74-4c88-b25a-759bfab1675a-3_878_615_667_717} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure}
  1. Find the potential energy, \(V\), of the system relative to a situation in which the rod AB is horizontal, and hence show that $$\frac { \mathrm { d } V } { \mathrm {~d} \theta } = 2 m g a \sin \theta \left( \frac { 3 \lambda } { \sqrt { 10 - 6 \cos \theta } } - 1 \right) .$$
  2. Show that \(\theta = 0\) and \(\theta = \pi\) are the only values of \(\theta\) for which the system is in equilibrium whatever the value of \(\lambda\).
  3. Show that, if there is a third value of \(\theta\) for which the system is in equilibrium, then \(\frac { 2 } { 3 } < \lambda < \frac { 4 } { 3 }\).
  4. Given that there are three positions of equilibrium, establish whether each of these positions is stable or unstable. It is given that, for small values of \(\theta\), $$\frac { \mathrm { d } V } { \mathrm {~d} \theta } \approx 2 m g a \left[ \left( \frac { 3 } { 2 } \lambda - 1 \right) \theta - \left( \frac { 13 } { 16 } \lambda - \frac { 1 } { 6 } \right) \theta ^ { 3 } \right] .$$
  5. Investigate the stability of the equilibrium position given by \(\theta = 0\) in the case when \(\lambda = \frac { 2 } { 3 }\).