Edexcel M4 2008 June — Question 7

Exam BoardEdexcel
ModuleM4 (Mechanics 4)
Year2008
SessionJune
TopicMoments

7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{376d12ab-022c-4070-a1e0-88eacc2fe48e-5_917_814_303_587} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} A uniform rod \(A B\), of length \(2 a\) and mass \(k M\) where \(k\) is a constant, is free to rotate in a vertical plane about the fixed point \(A\). One end of a light inextensible string of length \(6 a\) is attached to the end \(B\) of the rod and passes over a small smooth pulley which is fixed at the point \(P\). The line \(A P\) is horizontal and of length \(2 a\). The other end of the string is attached to a particle of mass \(M\) which hangs vertically below the point \(P\), as shown in Figure 3. The angle \(P A B\) is \(2 \theta\), where \(0 ^ { \circ } \leq \theta \leq 180 ^ { \circ }\).
  1. Show that the potential energy of the system is $$M g a ( 4 \sin \theta - k \sin 2 \theta ) + \text { constant. }$$ The system has a position of equilibrium when \(\cos \theta = \frac { 3 } { 4 }\).
  2. Find the value of \(k\).
  3. Hence find the value of \(\cos \theta\) at the other position of equilibrium.
  4. Determine the stability of each of the two positions of equilibrium.