5. A light elastic spring has natural length \(l\) and modulus of elasticity \(m g\). One end of the spring is fixed to a point \(O\) on a rough horizontal table. The other end is attached to a particle \(P\) of mass \(m\) which is at rest on the table with \(O P = l\). At time \(t = 0\) the particle is projected with speed \(\sqrt { } ( g l )\) along the table in the direction \(O P\). At time \(t\) the displacement of \(P\) from its initial position is \(x\) and its speed is \(v\). The motion of \(P\) is subject to air resistance of magnitude \(2 m v \omega\), where \(\omega = \sqrt { \frac { g } { l } }\). The coefficient of friction between \(P\) and the table is 0.5 .
- Show that, until \(P\) first comes to rest,
$$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 2 \omega \frac { \mathrm {~d} x } { \mathrm {~d} t } + \omega ^ { 2 } x = - 0.5 g$$
- Find \(x\) in terms of \(t , l\) and \(\omega\).
- Hence find, in terms of \(\omega\), the time taken for \(P\) to first come to instantaneous rest.
(3)