A uniform lamina occupies the region bounded by the curve \(y = \frac { x ^ { 3 } } { a ^ { 2 } }\) for \(0 \leqslant x \leqslant 2 a\), the \(x\)-axis and the line \(x = 2 a\), where \(a\) is a positive constant. The vertices of the lamina are \(\mathrm { O } ( 0,0 ) , \mathrm { A } ( 2 a , 8 a )\) and \(\mathrm { B } ( 2 a , 0 )\), as shown in Fig. 4.2.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f2dd5719-bef3-45f2-afd2-c481e6a4b129-5_714_509_1546_858}
\captionsetup{labelformat=empty}
\caption{Fig. 4.2}
\end{figure}
- Find the coordinates of the centre of mass of the lamina.
- The lamina is freely suspended from the point A and hangs in equilibrium. Find the angle that AB makes with the vertical.