OCR MEI M3 2011 January — Question 2

Exam BoardOCR MEI
ModuleM3 (Mechanics 3)
Year2011
SessionJanuary
TopicCircular Motion 2

2
  1. A particle P , of mass 48 kg , is moving in a horizontal circle of radius 8.4 m at a constant speed of \(V \mathrm {~m} \mathrm {~s} ^ { - 1 }\), in contact with a smooth horizontal surface. A light inextensible rope of length 30 m connects P to a fixed point A which is vertically above the centre C of the circle, as shown in Fig. 2.1. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{f2dd5719-bef3-45f2-afd2-c481e6a4b129-3_526_490_482_870} \captionsetup{labelformat=empty} \caption{Fig. 2.1}
    \end{figure}
    1. Given that \(V = 3.5\), find the tension in the rope and the normal reaction of the surface on P .
    2. Calculate the value of \(V\) for which the normal reaction is zero.
  2. The particle P , of mass 48 kg , is now placed on the highest point of a fixed solid sphere with centre O and radius 2.5 m . The surface of the sphere is smooth. The particle P is given an initial horizontal velocity of \(u \mathrm {~m} \mathrm {~s} ^ { - 1 }\), and it then moves in part of a vertical circle with centre O and radius 2.5 m . When OP makes an angle \(\theta\) with the upward vertical and P is still in contact with the surface of the sphere, P has speed \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and the normal reaction of the sphere on P is \(R \mathrm {~N}\), as shown in Fig. 2.2. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{f2dd5719-bef3-45f2-afd2-c481e6a4b129-3_590_617_1706_804} \captionsetup{labelformat=empty} \caption{Fig. 2.2}
    \end{figure}
    1. Show that \(v ^ { 2 } = u ^ { 2 } + 49 - 49 \cos \theta\).
    2. Find an expression for \(R\) in terms of \(u\) and \(v\).
    3. Given that P loses contact with the surface of the sphere at the instant when its speed is \(4.15 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), find the value of \(u\).
This paper (3 questions)
View full paper