5
\includegraphics[max width=\textwidth, alt={}, center]{85402f4a-8d55-47d8-ba48-5b837609b0f4-3_581_903_267_621}
Two uniform rods \(X A\) and \(X B\) are freely jointed at \(X\). The lengths of the rods are 1.5 m and 1.3 m respectively, and their weights are 150 N and 130 N respectively. The rods are in equilibrium in a vertical plane with \(A\) and \(B\) in contact with a rough horizontal surface. \(A\) and \(B\) are at distances horizontally from \(X\) of 0.9 m and 0.5 m respectively, and \(X\) is 1.2 m above the surface (see diagram).
- The normal components of the contact forces acting on the rods at \(A\) and \(B\) are \(R _ { A } \mathrm {~N}\) and \(R _ { B } \mathrm {~N}\) respectively. Show that \(R _ { A } = 125\) and find \(R _ { B }\).
- Find the frictional components of the contact forces acting on the rods at \(A\) and \(B\).
- Find the horizontal and vertical components of the force exerted on \(X A\) at \(X\), stating their directions.