4 A particle \(P\) of mass \(m \mathrm {~kg}\) is held at rest at a point \(O\) on a fixed plane inclined at an angle \(\sin ^ { - 1 } \left( \frac { 4 } { 7 } \right)\) to the horizontal. \(P\) is released and moves down the plane. The total resistance acting on \(P\) is \(0.2 m v \mathrm {~N}\), where \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) is the velocity of \(P\) at time \(t \mathrm {~s}\) after leaving \(O\).
- Show that \(5 \frac { \mathrm {~d} v } { \mathrm {~d} t } = 28 - v\) and hence find an expression for \(v\) in terms of \(t\).
- Find the acceleration of \(P\) when \(t = 10\).