5 A light elastic string of natural length 1.6 m has modulus of elasticity 120 N . One end of the string is attached to a fixed point \(O\) and the other end is attached to a particle \(P\) of weight 1.5 N . The particle is released from rest at the point \(A\), which is 2.1 m vertically below \(O\). It comes instantaneously to rest at \(B\), which is vertically above \(O\).
- Verify that the distance \(A B\) is 4 m .
- Find the maximum speed of \(P\) during its upward motion from \(A\) to \(B\).
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{08760a55-da6c-41f2-a88a-289ecc227f69-4_351_442_303_479}
\captionsetup{labelformat=empty}
\caption{Fig. 1}
\end{figure}
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{08760a55-da6c-41f2-a88a-289ecc227f69-4_394_648_260_1018}
\captionsetup{labelformat=empty}
\caption{Fig. 2}
\end{figure}
A light inextensible string of length \(0.8 \pi \mathrm {~m}\) has particles \(P\) and \(Q\), of masses 0.4 kg and 0.58 kg respectively, attached to its ends. The string passes over a smooth horizontal cylinder of radius 0.8 m , which is fixed with its axis horizontal and passing through a fixed point \(O\). The string is held at rest in a vertical plane perpendicular to the axis of the cylinder, with \(P\) and \(Q\) at opposite ends of the horizontal diameter of the cylinder through \(O\) (see Fig. 1). The string is released and \(Q\) begins to descend. When \(O P\) has rotated through \(\theta\) radians, with \(P\) remaining in contact with the cylinder, the speed of each particle is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) (see Fig. 2).