4 A particle \(P\) of mass 0.2 kg travels in a straight line on a horizontal surface. It passes through a point \(O\) on the surface with speed \(2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). A resistive force of magnitude \(0.2 \left( v + v ^ { 2 } \right) \mathrm { N }\) acts on \(P\) in the direction opposite to its motion, where \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) is the speed of \(P\) when it is at a distance \(x \mathrm {~m}\) from \(O\).
- Show that \(\frac { 1 } { 1 + v } \frac { \mathrm {~d} v } { \mathrm {~d} x } = - 1\).
- By solving the differential equation in part (i) show that \(\frac { - \mathrm { e } ^ { x } } { 3 - \mathrm { e } ^ { x } } \frac { \mathrm {~d} x } { \mathrm {~d} t } = - 1\), where \(t\) s is the time taken for \(P\) to travel \(x \mathrm {~m}\) from \(O\).
- Hence find the value of \(t\) when \(x = 1\).