CAIE P3 2020 June — Question 6

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2020
SessionJune
TopicFixed Point Iteration

6
  1. By sketching a suitable pair of graphs, show that the equation \(x ^ { 5 } = 2 + x\) has exactly one real root.
  2. Show that if a sequence of values given by the iterative formula $$x _ { n + 1 } = \frac { 4 x _ { n } ^ { 5 } + 2 } { 5 x _ { n } ^ { 4 } - 1 }$$ converges, then it converges to the root of the equation in part (a).
  3. Use the iterative formula with initial value \(x _ { 1 } = 1.5\) to calculate the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places.
    \(7 \quad\) Let \(\mathrm { f } ( x ) = \frac { 2 } { ( 2 x - 1 ) ( 2 x + 1 ) }\).