8 Relative to the origin \(O\), the points \(A , B\) and \(D\) have position vectors given by
$$\overrightarrow { O A } = \mathbf { i } + 2 \mathbf { j } + \mathbf { k } , \quad \overrightarrow { O B } = 2 \mathbf { i } + 5 \mathbf { j } + 3 \mathbf { k } \quad \text { and } \quad \overrightarrow { O D } = 3 \mathbf { i } + 2 \mathbf { k }$$
A fourth point \(C\) is such that \(A B C D\) is a parallelogram.
- Find the position vector of \(C\) and verify that the parallelogram is not a rhombus.
- Find angle \(B A D\), giving your answer in degrees.
- Find the area of the parallelogram correct to 3 significant figures.