5 A particle is projected from a point \(O\) on a plane which is inclined at an angle \(\theta\) to the horizontal. The particle is projected down the plane with velocity \(u\) at an angle \(\alpha\) above the plane. The particle first strikes the plane at a point \(P\), as shown in the diagram. The motion of the particle is in a vertical plane containing a line of greatest slope of the inclined plane.
\includegraphics[max width=\textwidth, alt={}, center]{3a1726d9-1b0c-41de-8b43-56019e18aac1-12_389_789_557_639}
- Given that the time of flight from \(O\) to \(P\) is \(T\), find an expression for \(u\) in terms of \(\theta , \alpha , T\) and \(g\).
- Using the identity \(\cos ( X - Y ) = \cos X \cos Y + \sin X \sin Y\), show that the distance \(O P\) is given by \(\frac { 2 u ^ { 2 } \sin \alpha \cos ( \alpha - \theta ) } { g \cos ^ { 2 } \theta }\).
(6 marks)