CAIE P3 2020 June — Question 9

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2020
SessionJune
TopicFixed Point Iteration

9
\includegraphics[max width=\textwidth, alt={}, center]{3149080d-ad1a-4d2e-8e20-eb9977ced619-14_558_686_260_726} The diagram shows the curves \(y = \cos x\) and \(y = \frac { k } { 1 + x }\), where \(k\) is a constant, for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\). The curves touch at the point where \(x = p\).
  1. Show that \(p\) satisfies the equation \(\tan p = \frac { 1 } { 1 + p }\).
  2. Use the iterative formula \(p _ { n + 1 } = \tan ^ { - 1 } \left( \frac { 1 } { 1 + p _ { n } } \right)\) to determine the value of \(p\) correct to 3 decimal places. Give the result of each iteration to 5 decimal places.
  3. Hence find the value of \(k\) correct to 2 decimal places.