CAIE P3 2020 June — Question 10

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2020
SessionJune
TopicComplex Numbers Arithmetic
TypeComplex number parameter problems

10
  1. The complex number \(u\) is defined by \(u = \frac { 3 \mathrm { i } } { a + 2 \mathrm { i } }\), where \(a\) is real.
    1. Express \(u\) in the Cartesian form \(x + \mathrm { i } y\), where \(x\) and \(y\) are in terms of \(a\).
    2. Find the exact value of \(a\) for which \(\arg u ^ { * } = \frac { 1 } { 3 } \pi\).
    1. On a sketch of an Argand diagram, shade the region whose points represent complex numbers \(z\) satisfying the inequalities \(| z - 2 \mathbf { i } | \leqslant | z - 1 - \mathbf { i } |\) and \(| z - 2 - \mathbf { i } | \leqslant 2\).
    2. Calculate the least value of \(\arg z\) for points in this region.
      If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.