AQA M2 2015 June — Question 1 5 marks

Exam BoardAQA
ModuleM2 (Mechanics 2)
Year2015
SessionJune
Marks5
TopicNon-constant acceleration

1 A particle, of mass 4 kg , moves in a horizontal plane under the action of a single force, \(\mathbf { F }\) newtons. The unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) are in the horizontal plane, perpendicular to each other. At time \(t\) seconds, the velocity of the particle, \(\mathbf { v } \mathrm { m } \mathrm { s } ^ { - 1 }\), is given by $$\mathbf { v } = 4 \cos 2 t \mathbf { i } + 3 \sin t \mathbf { j }$$
    1. Find an expression for the force, \(\mathbf { F }\), acting on the particle at time \(t\) seconds.
    2. Find the magnitude of \(\mathbf { F }\) when \(t = \pi\).
  1. When \(t = 0\), the particle is at the point with position vector \(( 2 \mathbf { i } - 14 \mathbf { j } )\) metres. Find the position vector, \(\mathbf { r }\) metres, of the particle at time \(t\) seconds.
    [0pt] [5 marks]
    \includegraphics[max width=\textwidth, alt={}]{691c50b4-50b2-4e3a-a7e0-60f8ec35ee3c-02_1346_1717_1361_150}