Use the factor theorem to show that ( \(2 x + 3\) ) is a factor of
$$8 x ^ { 3 } + 4 x ^ { 2 } - 10 x + 3$$
Show that the equation \(2 \cos 2 \theta = \frac { 6 \cos \theta - 5 } { 2 \cos \theta + 1 }\) can be expressed as
$$8 \cos ^ { 3 } \theta + 4 \cos ^ { 2 } \theta - 10 \cos \theta + 3 = 0 .$$
Solve the equation \(2 \cos 2 \theta = \frac { 6 \cos \theta - 5 } { 2 \cos \theta + 1 }\) for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\).
If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.