3 A ship travels through water that is moving due east at a speed of \(1.4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The ship travels due north relative to the water at a speed of \(7 \mathrm {~ms} ^ { - 1 }\). The resultant velocity of the ship is \(V \mathrm {~m} \mathrm {~s} ^ { - 1 }\) on a bearing \(\alpha\).
\begin{figure}[h]
\captionsetup{labelformat=empty}
\caption{Velocity of the
water}
\includegraphics[alt={},max width=\textwidth]{cb5001b1-1744-439f-aa35-8dd01bc90421-2_387_391_2069_653}
\end{figure}
\begin{figure}[h]
\captionsetup{labelformat=empty}
\caption{Velocity of the ship relative to the water}
\includegraphics[alt={},max width=\textwidth]{cb5001b1-1744-439f-aa35-8dd01bc90421-2_214_167_2165_1334}
\end{figure}
- \(\quad\) Find \(V\).
- Find \(\alpha\), giving your answer as a three-figure bearing, correct to the nearest degree.