Edexcel S4 2011 June — Question 6

Exam BoardEdexcel
ModuleS4 (Statistics 4)
Year2011
SessionJune
TopicCentral limit theorem
TypeEstimator properties and bias

  1. A random sample \(X _ { 1 } , X _ { 2 } , \ldots , X _ { n }\) is taken from a population where each of the \(X _ { i }\) have a continuous uniform distribution over the interval \([ 0 , \beta ]\).
    The random variable \(Y = \max \left\{ X _ { 1 } , X _ { 2 } , \ldots , X _ { n } \right\}\).
    The probability density function of \(Y\) is given by
$$f ( y ) = \left\{ \begin{array} { c c } \frac { n } { \beta ^ { n } } y ^ { n - 1 } & 0 \leqslant y \leqslant \beta
0 & \text { otherwise } \end{array} \right.$$
  1. Show that \(\mathrm { E } \left( Y ^ { m } \right) = \frac { n } { n + m } \beta ^ { m }\).
  2. Write down \(\mathrm { E } ( Y )\).
  3. Using your answers to parts (a) and (b), or otherwise, show that $$\operatorname { Var } ( Y ) = \frac { n } { ( n + 1 ) ^ { 2 } ( n + 2 ) } \beta ^ { 2 }$$
  4. State, giving your reasons, whether or not \(Y\) is a consistent estimator of \(\beta\). The random variables \(M = 2 \bar { X }\), where \(\bar { X } = \frac { 1 } { n } \left( X _ { 1 } + X _ { 2 } + \ldots + X _ { n } \right)\), and \(S = k Y\), where \(k\) is a constant, are both unbiased estimators of \(\beta\).
  5. Find the value of \(k\) in terms of \(n\).
  6. State, giving your reasons, which of \(M\) and \(S\) is the better estimator of \(\beta\) in this case. Five observations of \(X\) are: \(\quad \begin{array} { l l l l l } 8.5 & 6.3 & 5.4 & 9.1 & 7.6 \end{array}\)
  7. Calculate the better estimate of \(\beta\).