5
\includegraphics[max width=\textwidth, alt={}, center]{9bbcee46-c5b8-4836-a4b4-f317bf8b1c0a-2_556_844_1731_648}
The diagram shows the curve \(y = \frac { 4 \ln x } { x ^ { 2 } + 1 }\) and its stationary point \(M\). The \(x\)-coordinate of \(M\) is \(m\).
- Find an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and hence show that \(m = \mathrm { e } ^ { 0.5 \left( 1 + m ^ { - 2 } \right) }\).
- Use an iterative formula based on the equation in part (i) to find the value of \(m\) correct to 4 significant figures. Give the result of each iteration to 6 significant figures.