CAIE P2 2016 November — Question 6

Exam BoardCAIE
ModuleP2 (Pure Mathematics 2)
Year2016
SessionNovember
TopicReciprocal Trig & Identities

6
  1. Show that \(\frac { \cos 2 \theta } { 1 + \cos 2 \theta } \equiv 1 - \frac { 1 } { 2 } \sec ^ { 2 } \theta\).
  2. Solve the equation \(\frac { \cos 2 \alpha } { 1 + \cos 2 \alpha } = 13 + 5 \tan \alpha\) for \(0 < \alpha < \pi\).
  3. Find the exact value of \(\int _ { - \frac { 1 } { 2 } \pi } ^ { \frac { 1 } { 2 } \pi } \frac { \cos x } { 1 + \cos x } \mathrm {~d} x\).