A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q6
CAIE P2 2016 November — Question 6
Exam Board
CAIE
Module
P2 (Pure Mathematics 2)
Year
2016
Session
November
Topic
Reciprocal Trig & Identities
6
Show that \(\frac { \cos 2 \theta } { 1 + \cos 2 \theta } \equiv 1 - \frac { 1 } { 2 } \sec ^ { 2 } \theta\).
Solve the equation \(\frac { \cos 2 \alpha } { 1 + \cos 2 \alpha } = 13 + 5 \tan \alpha\) for \(0 < \alpha < \pi\).
Find the exact value of \(\int _ { - \frac { 1 } { 2 } \pi } ^ { \frac { 1 } { 2 } \pi } \frac { \cos x } { 1 + \cos x } \mathrm {~d} x\).
This paper
(7 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7