Find stationary point coordinate

A question is this type if and only if it requires finding dy/dx, showing the stationary point satisfies a specific equation, then using an iterative method (Newton-Raphson or other) to find the x-coordinate of the stationary point.

6 questions

CAIE P2 2014 November Q6
6
\includegraphics[max width=\textwidth, alt={}, center]{293e1e27-77e9-4b19-a152-96d71b75346e-3_296_675_945_735} The diagram shows part of the curve \(y = \frac { x ^ { 2 } } { 1 + \mathrm { e } ^ { 3 x } }\) and its maximum point \(M\). The \(x\)-coordinate of \(M\) is denoted by \(m\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and hence show that \(m\) satisfies the equation \(x = \frac { 2 } { 3 } \left( 1 + \mathrm { e } ^ { - 3 x } \right)\).
  2. Show by calculation that \(m\) lies between 0.7 and 0.8 .
  3. Use an iterative formula based on the equation in part (i) to find \(m\) correct to 3 decimal places. Give the result of each iteration to 5 decimal places.
CAIE P2 2016 November Q5
5
\includegraphics[max width=\textwidth, alt={}, center]{9bbcee46-c5b8-4836-a4b4-f317bf8b1c0a-2_556_844_1731_648} The diagram shows the curve \(y = \frac { 4 \ln x } { x ^ { 2 } + 1 }\) and its stationary point \(M\). The \(x\)-coordinate of \(M\) is \(m\).
  1. Find an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and hence show that \(m = \mathrm { e } ^ { 0.5 \left( 1 + m ^ { - 2 } \right) }\).
  2. Use an iterative formula based on the equation in part (i) to find the value of \(m\) correct to 4 significant figures. Give the result of each iteration to 6 significant figures.
OCR H240/01 2021 November Q7
7 The curve \(y = \left( x ^ { 2 } - 2 \right) \ln x\) has one stationary point which is close to \(x = 1\).
  1. Show that the \(x\)-coordinate of this stationary point satisfies the equation \(2 x ^ { 2 } \ln x + x ^ { 2 } - 2 = 0\).
  2. Show that the Newton-Raphson iterative formula for finding the root of the equation in part (a) can be written in the form \(x _ { n + 1 } = \frac { 2 x _ { n } ^ { 2 } \ln x _ { n } + 3 x _ { n } ^ { 2 } + 2 } { 4 x _ { n } \left( \ln x _ { n } + 1 \right) }\).
  3. Apply the Newton-Raphson formula with initial value \(x _ { 1 } = 1\) to find \(x _ { 2 }\) and \(x _ { 3 }\).
  4. Find the coordinates of this stationary point, giving each coordinate correct to \(\mathbf { 3 }\) decimal places.
Edexcel Paper 2 2022 June Q6
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{824d73c5-525c-4876-ad66-33c8f1664277-12_634_741_251_662} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of part of the curve with equation \(y = \mathrm { f } ( x )\) where $$f ( x ) = 8 \sin \left( \frac { 1 } { 2 } x \right) - 3 x + 9 \quad x > 0$$ and \(x\) is measured in radians.
The point \(P\), shown in Figure 2, is a local maximum point on the curve.
Using calculus and the sketch in Figure 2,
  1. find the \(x\) coordinate of \(P\), giving your answer to 3 significant figures. The curve crosses the \(x\)-axis at \(x = \alpha\), as shown in Figure 2 .
    Given that, to 3 decimal places, \(f ( 4 ) = 4.274\) and \(f ( 5 ) = - 1.212\)
  2. explain why \(\alpha\) must lie in the interval \([ 4,5 ]\)
  3. Taking \(x _ { 0 } = 5\) as a first approximation to \(\alpha\), apply the Newton-Raphson method once to \(\mathrm { f } ( x )\) to obtain a second approximation to \(\alpha\). Show your method and give your answer to 3 significant figures.
Edexcel Paper 2 2020 October Q7
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e28350e9-5090-4079-97da-e669ef9a5a7a-16_621_799_246_630} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve \(C\) with equation $$y = \frac { 4 x ^ { 2 } + x } { 2 \sqrt { x } } - 4 \ln x \quad x > 0$$
  1. Show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 12 x ^ { 2 } + x - 16 \sqrt { x } } { 4 x \sqrt { x } }$$ The point \(P\), shown in Figure 1, is the minimum turning point on \(C\).
  2. Show that the \(x\) coordinate of \(P\) is a solution of $$x = \left( \frac { 4 } { 3 } - \frac { \sqrt { x } } { 12 } \right) ^ { \frac { 2 } { 3 } }$$
  3. Use the iteration formula $$x _ { n + 1 } = \left( \frac { 4 } { 3 } - \frac { \sqrt { x _ { n } } } { 12 } \right) ^ { \frac { 2 } { 3 } } \quad \text { with } x _ { 1 } = 2$$ to find (i) the value of \(x _ { 2 }\) to 5 decimal places,
    (ii) the \(x\) coordinate of \(P\) to 5 decimal places.
Edexcel C3 Q1
\begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 2} \includegraphics[alt={},max width=\textwidth]{909b52e5-2f16-4eab-b691-9d8fcf9bcfd9-2_679_1189_516_520}
\end{figure} Figure 2 shows part of the curve \(C\) with equation \(y = \mathrm { f } ( x )\), where $$\mathrm { f } ( x ) = 0.5 \mathrm { e } ^ { x } - x ^ { 2 }$$ The curve \(C\) cuts the \(y\)-axis at \(A\) and there is a minimum at the point \(B\).
  1. Find an equation of the tangent to \(C\) at \(A\). The \(x\)-coordinate of \(B\) is approximately 2.15 . A more exact estimate is to be made of this coordinate using iterations \(x _ { n + 1 } = \ln \mathrm { g } \left( x _ { n } \right)\).
  2. Show that a possible form for \(\mathrm { g } ( x )\) is \(\mathrm { g } ( x ) = 4 x\).
  3. Using \(x _ { n + 1 } = \ln 4 x _ { n }\), with \(x _ { 0 } = 2.15\), calculate \(x _ { 1 } , x _ { 2 }\) and \(x _ { 3 }\). Give the value of \(x _ { 3 }\) to 4 decimal places.