AQA S3 2008 June — Question 7

Exam BoardAQA
ModuleS3 (Statistics 3)
Year2008
SessionJune
TopicPoisson Distribution
TypeProving Poisson properties from first principles

7
  1. The random variable \(X\) has a Poisson distribution with \(\mathrm { E } ( X ) = \lambda\).
    1. Prove, from first principles, that \(\mathrm { E } ( X ( X - 1 ) ) = \lambda ^ { 2 }\).
    2. Hence deduce that \(\operatorname { Var } ( X ) = \lambda\).
  2. The independent Poisson random variables \(X _ { 1 }\) and \(X _ { 2 }\) are such that \(\mathrm { E } \left( X _ { 1 } \right) = 5\) and \(\mathrm { E } \left( X _ { 2 } \right) = 2\). The random variables \(D\) and \(F\) are defined by $$D = X _ { 1 } - X _ { 2 } \quad \text { and } \quad F = 2 X _ { 1 } + 10$$
    1. Determine the mean and the variance of \(D\).
    2. Determine the mean and the variance of \(F\).
    3. For each of the variables \(D\) and \(F\), give a reason why the distribution is not Poisson.
  3. The daily number of black printer cartridges sold by a shop may be modelled by a Poisson distribution with a mean of 5 . Independently, the daily number of colour printer cartridges sold by the same shop may be modelled by a Poisson distribution with a mean of 2. Use a distributional approximation to estimate the probability that the total number of black and colour printer cartridges sold by the shop during a 4 -week period ( 24 days) exceeds 175.