AQA S3 (Statistics 3) 2008 June

Question 1
View details
1 The best performances of a random sample of 20 junior athletes in the long jump, \(x\) metres, and in the high jump, \(y\) metres, were recorded. The following statistics were calculated from the results. $$S _ { x x } = 7.0036 \quad S _ { y y } = 0.8464 \quad S _ { x y } = 1.3781$$
  1. Calculate the value of the product moment correlation coefficient between \(x\) and \(y\).
    (2 marks)
  2. Assuming that these data come from a bivariate normal distribution, investigate, at the \(1 \%\) level of significance, the claim that for junior athletes there is a positive correlation between \(x\) and \(y\).
  3. Interpret your conclusion in the context of this question.
Question 2
View details
2 A survey of a random sample of 200 passengers on UK internal flights revealed that 132 of them were on business trips.
  1. Construct an approximate \(98 \%\) confidence interval for the proportion of passengers on UK internal flights that are on business trips.
  2. Hence comment on the claim that more than 60 per cent of passengers on UK internal flights are on business trips.
Question 3
View details
3 Pitted black olives in brine are sold in jars labelled " 340 grams net weight". Two machines, A and B, independently fill these jars with olives before the brine is added. The weight, \(X\) grams, of olives delivered by machine A may be modelled by a normal distribution with mean \(\mu _ { X }\) and standard deviation 4.5. The weight, \(Y\) grams, of olives delivered by machine B may be modelled by a normal distribution with mean \(\mu _ { Y }\) and standard deviation 5.7. The mean weight of olives from a random sample of 10 jars filled by machine A is found to be 157 grams, whereas that from a random sample of 15 jars filled by machine \(B\) is found to be 162 grams. Test, at the \(1 \%\) level of significance, the hypothesis that \(\mu _ { X } = \mu _ { Y }\).
(6 marks)
Question 4
View details
4 A manufacturer produces three models of washing machine: basic, standard and deluxe. An analysis of warranty records shows that \(25 \%\) of faults are on basic machines, \(60 \%\) are on standard machines and 15\% are on deluxe machines. For basic machines, 30\% of faults reported during the warranty period are electrical, \(50 \%\) are mechanical and \(20 \%\) are water-related. For standard machines, 40\% of faults reported during the warranty period are electrical, \(45 \%\) are mechanical and 15\% are water-related. For deluxe machines, \(55 \%\) of faults reported during the warranty period are electrical, \(35 \%\) are mechanical and \(10 \%\) are water-related.
  1. Draw a tree diagram to represent the above information.
  2. Hence, or otherwise, determine the probability that a fault reported during the warranty period:
    1. is electrical;
    2. is on a deluxe machine, given that it is electrical.
  3. A random sample of 10 electrical faults reported during the warranty period is selected. Calculate the probability that exactly 4 of them are on deluxe machines.
Question 5
View details
5 The daily number of emergency calls received from district A may be modelled by a Poisson distribution with a mean of \(\lambda _ { \mathrm { A } }\). The daily number of emergency calls received from district B may be modelled by a Poisson distribution with a mean of \(\lambda _ { \mathrm { B } }\). During a period of 184 days, the number of emergency calls received from district A was 3312, whilst the number received from district B was 2760.
  1. Construct an approximate \(95 \%\) confidence interval for \(\lambda _ { \mathrm { A } } - \lambda _ { \mathrm { B } }\).
  2. State one assumption that is necessary in order to construct the confidence interval in part (a).
Question 6
View details
6 An aircraft, based at airport A, flies regularly to and from airport B.
The aircraft's flying time, \(X\) minutes, from A to B has a mean of 128 and a variance of 50 .
The aircraft's flying time, \(Y\) minutes, on the return flight from B to A is such that $$\mathrm { E } ( Y ) = 112 , \quad \operatorname { Var } ( Y ) = 50 \quad \text { and } \quad \rho _ { X Y } = - 0.4$$
  1. Given that \(F = X + Y\) :
    1. find the mean of \(F\);
    2. show that the variance of \(F\) is 60 .
  2. At airport B , the stopover time, \(S\) minutes, is independent of \(F\) and has a mean of 75 and a variance of 36 . Find values for the mean and the variance of:
    1. \(T = F + S\);
    2. \(M = F - 3 S\).
  3. Hence, assuming that \(T\) and \(M\) are normally distributed, determine the probability that, on a particular round trip of the aircraft from A to B and back to A :
    1. the time from leaving A to returning to A exceeds 300 minutes;
    2. the stopover time is greater than one third of the total flying time.
Question 7
View details
7
  1. The random variable \(X\) has a Poisson distribution with \(\mathrm { E } ( X ) = \lambda\).
    1. Prove, from first principles, that \(\mathrm { E } ( X ( X - 1 ) ) = \lambda ^ { 2 }\).
    2. Hence deduce that \(\operatorname { Var } ( X ) = \lambda\).
  2. The independent Poisson random variables \(X _ { 1 }\) and \(X _ { 2 }\) are such that \(\mathrm { E } \left( X _ { 1 } \right) = 5\) and \(\mathrm { E } \left( X _ { 2 } \right) = 2\). The random variables \(D\) and \(F\) are defined by $$D = X _ { 1 } - X _ { 2 } \quad \text { and } \quad F = 2 X _ { 1 } + 10$$
    1. Determine the mean and the variance of \(D\).
    2. Determine the mean and the variance of \(F\).
    3. For each of the variables \(D\) and \(F\), give a reason why the distribution is not Poisson.
  3. The daily number of black printer cartridges sold by a shop may be modelled by a Poisson distribution with a mean of 5 . Independently, the daily number of colour printer cartridges sold by the same shop may be modelled by a Poisson distribution with a mean of 2. Use a distributional approximation to estimate the probability that the total number of black and colour printer cartridges sold by the shop during a 4 -week period ( 24 days) exceeds 175.