8 The continuous random variable \(X\) has cumulative distribution function
$$\mathrm { F } ( x ) = \left\{ \begin{array} { c c }
0 & x < - 1
\frac { x + 1 } { k + 1 } & - 1 \leqslant x \leqslant k
1 & x > k
\end{array} \right.$$
where \(k\) is a positive constant.
- Find, in terms of \(k\), an expression for \(\mathrm { P } ( X < 0 )\).
- Determine an expression, in terms of \(k\), for the lower quartile, \(q _ { 1 }\).
- Show that the probability density function of \(X\) is defined by
$$\mathrm { f } ( x ) = \left\{ \begin{array} { c c }
\frac { 1 } { k + 1 } & - 1 \leqslant x \leqslant k
0 & \text { otherwise }
\end{array} \right.$$ - Given that \(k = 11\) :
- sketch the graph of f;
- determine \(\mathrm { E } ( X )\) and \(\operatorname { Var } ( X )\);
- show that \(\mathrm { P } \left( q _ { 1 } < X < \mathrm { E } ( X ) \right) = 0.25\).