Continuous CDF with polynomial pieces

Given a continuous piecewise CDF with polynomial expressions, use continuity at boundaries and F(max)=1 to find unknown constants.

12 questions

Edexcel S2 2016 January Q4
4. A continuous random variable \(X\) has cumulative distribution function $$F ( x ) = \left\{ \begin{array} { l r } 0 & x < 0
\frac { 1 } { 4 } x & 0 \leqslant x \leqslant 1
\frac { 1 } { 20 } x ^ { 4 } + \frac { 1 } { 5 } & 1 < x \leqslant d
1 & x > d \end{array} \right.$$
  1. Show that \(d = 2\)
  2. Find \(\mathrm { P } ( X < 1.5 )\)
  3. Write down the value of the lower quartile of \(X\)
  4. Find the median of \(X\)
  5. Find, to 3 significant figures, the value of \(k\) such that \(\mathrm { P } ( X > 1.9 ) = \mathrm { P } ( X < k )\)
Edexcel S2 2016 October Q2
  1. The lifetime of a particular battery, \(T\) hours, is modelled using the cumulative distribution function
$$\mathrm { F } ( t ) = \left\{ \begin{array} { l r } 0 & t < 8
\frac { 1 } { 96 } \left( 74 t - \frac { 5 } { 2 } t ^ { 2 } + k \right) & 8 \leqslant t \leqslant 12
1 & t > 12 \end{array} \right.$$
  1. Show that \(k = - 432\)
  2. Find the probability density function of \(T\), for all values of \(t\).
  3. Write down the mode of \(T\).
  4. Find the median of \(T\).
  5. Find the probability that a randomly selected battery has a lifetime of less than 9 hours. A battery is selected at random. Given that its lifetime is at least 9 hours,
  6. find the probability that its lifetime is no more than 11 hours.
Edexcel S2 2002 January Q7
7. A continuous random variable \(X\) has cumulative distribution function \(\mathrm { F } ( x )\) given by $$\mathrm { F } ( x ) = \left\{ \begin{array} { l r } 0 , & x < 0
k x ^ { 2 } + 2 k x , & 0 \leq x \leq 2
8 k , & x > 2 \end{array} \right.$$
  1. Show that \(k = \frac { 1 } { 8 }\).
  2. Find the median of \(X\).
  3. Find the probability density function \(\mathrm { f } ( x )\).
  4. Sketch \(\mathrm { f } ( x )\) for all values of \(x\).
  5. Write down the mode of \(X\).
  6. Find \(\mathrm { E } ( X )\).
  7. Comment on the skewness of this distribution.
Edexcel S2 2008 January Q4
  1. The continuous random variable \(Y\) has cumulative distribution function \(\mathrm { F } ( y )\) given by
$$\mathrm { F } ( y ) = \left\{ \begin{array} { c l } 0 & y < 1
k \left( y ^ { 4 } + y ^ { 2 } - 2 \right) & 1 \leqslant y \leqslant 2
1 & y > 2 \end{array} \right.$$
  1. Show that \(k = \frac { 1 } { 18 }\).
  2. Find \(\mathrm { P } ( Y > 1.5 )\).
  3. Specify fully the probability density function f(y).
Edexcel S2 2013 June Q2
2. The continuous random variable \(Y\) has cumulative distribution function $$\mathrm { F } ( y ) = \left\{ \begin{array} { c c } 0 & y < 0
\frac { 1 } { 4 } \left( y ^ { 3 } - 4 y ^ { 2 } + k y \right) & 0 \leqslant y \leqslant 2
1 & y > 2 \end{array} \right.$$ where \(k\) is a constant.
  1. Find the value of \(k\).
  2. Find the probability density function of \(Y\), specifying it for all values of \(y\).
  3. Find \(\mathrm { P } ( Y > 1 )\).
Edexcel S2 2013 June Q5
  1. The continuous random variable \(X\) has a cumulative distribution function
$$\mathrm { F } ( x ) = \left\{ \begin{array} { l r } 0 & x < 1
\frac { x ^ { 3 } } { 10 } + \frac { 3 x ^ { 2 } } { 10 } + a x + b & 1 \leqslant x \leqslant 2
1 & x > 2 \end{array} \right.$$ where \(a\) and \(b\) are constants.
  1. Find the value of \(a\) and the value of \(b\).
  2. Show that \(\mathrm { f } ( x ) = \frac { 3 } { 10 } \left( x ^ { 2 } + 2 x - 2 \right) , \quad 1 \leqslant x \leqslant 2\)
  3. Use integration to find \(\mathrm { E } ( X )\).
  4. Show that the lower quartile of \(X\) lies between 1.425 and 1.435
Edexcel S2 Q5
5. The continuous random variable \(T\) represents the time in hours that students spend on homework. The cumulative distribution function of \(T\) is $$\mathrm { F } ( t ) = \begin{cases} 0 , & t < 0
k \left( 2 t ^ { 3 } - t ^ { 4 } \right) & 0 \leq t \leq 1.5
1 , & t > 1.5 \end{cases}$$ where \(k\) is a positive constant.
  1. Show that \(k = \frac { 16 } { 27 }\).
  2. Find the proportion of students who spend more than 1 hour on homework.
  3. Find the probability density function \(\mathrm { f } ( t )\) of \(T\).
  4. Show that \(\mathrm { E } ( T ) = 0.9\).
  5. Show that \(\mathrm { F } ( \mathrm { E } ( T ) ) = 0.4752\). A student is selected at random. Given that the student spent more than the mean amount of time on homework,
  6. find the probability that this student spent more than 1 hour on homework.
AQA S2 2008 June Q8
8 The continuous random variable \(X\) has cumulative distribution function $$\mathrm { F } ( x ) = \left\{ \begin{array} { c c } 0 & x < - 1
\frac { x + 1 } { k + 1 } & - 1 \leqslant x \leqslant k
1 & x > k \end{array} \right.$$ where \(k\) is a positive constant.
  1. Find, in terms of \(k\), an expression for \(\mathrm { P } ( X < 0 )\).
  2. Determine an expression, in terms of \(k\), for the lower quartile, \(q _ { 1 }\).
  3. Show that the probability density function of \(X\) is defined by $$\mathrm { f } ( x ) = \left\{ \begin{array} { c c } \frac { 1 } { k + 1 } & - 1 \leqslant x \leqslant k
    0 & \text { otherwise } \end{array} \right.$$
  4. Given that \(k = 11\) :
    1. sketch the graph of f;
    2. determine \(\mathrm { E } ( X )\) and \(\operatorname { Var } ( X )\);
    3. show that \(\mathrm { P } \left( q _ { 1 } < X < \mathrm { E } ( X ) \right) = 0.25\).
Edexcel S2 Q5
  1. A continuous random variable \(X\) has the cumulative distribution function
$$\begin{array} { l l } \mathrm { F } ( x ) = 0 & x < 2 ,
\mathrm {~F} ( x ) = k ( x - a ) ^ { 2 } & 2 \leq x \leq 6 ,
\mathrm {~F} ( x ) = 1 & x \geq 6 . \end{array}$$
  1. Find the values of the constants \(a\) and \(k\).
  2. Show that the median of \(X\) is \(2 ( 1 + \sqrt { 2 } )\).
  3. Given that \(X > 4\), find the probability that \(X > 5\).
Edexcel S2 Q1
  1. The continuous random variable \(X\) has the following cumulative distribution function:
$$F ( x ) = \begin{cases} 0 , & x < 2
k \left( 19 x - x ^ { 2 } - 34 \right) , & 2 \leq x \leq 5
1 , & x > 5 \end{cases}$$
  1. Show that \(k = \frac { 1 } { 36 }\).
  2. Find \(\mathrm { P } ( X > 4 )\).
  3. Find and specify fully the probability density function \(\mathrm { f } ( x )\) of \(X\).
OCR MEI Further Statistics B AS 2019 June Q4
4 The cumulative distribution function of the continuous random variable \(X\) is given by
\(\mathrm { F } ( x ) = \begin{cases} 0 & x < 0 ,
k \left( 12 x - x ^ { 2 } \right) & 0 \leqslant x \leqslant 2 ,
1 & x > 2 , \end{cases}\) where \(k\) is a constant.
  1. Show that \(k = 0.05\).
  2. Find \(\mathrm { P } ( 1 \leqslant X \leqslant 1.5 )\).
  3. Find the median of \(X\), correct to 3 significant figures.
  4. Find which of the median, mean and mode of \(X\) is the largest of the three measures of central tendency.
Edexcel FS2 AS 2018 June Q4
  1. The continuous random variable \(X\) has cumulative distribution function
$$\mathrm { F } ( x ) = \left\{ \begin{array} { l r } 0 & x < 3
c - 4.5 x ^ { n } & 3 \leqslant x \leqslant 9
1 & x > 9 \end{array} \right.$$ where \(c\) is a positive constant and \(n\) is an integer.
  1. Showing all stages of your working, find the value of \(c\) and the value of \(n\)
  2. Find the lower quartile of \(X\)