AQA S2 2011 January — Question 4

Exam BoardAQA
ModuleS2 (Statistics 2)
Year2011
SessionJanuary
TopicDiscrete Probability Distributions
TypeCalculate E(X) from given distribution

4
  1. A red biased tetrahedral die is rolled. The number, \(X\), on the face on which it lands has the probability distribution given by
    \(\boldsymbol { x }\)1234
    \(\mathbf { P } ( \boldsymbol { X } = \boldsymbol { x } )\)0.20.10.40.3
    1. Calculate \(\mathrm { E } ( X )\) and \(\operatorname { Var } ( X )\).
    2. The red die is now rolled three times. The random variable \(S\) is the sum of the three numbers obtained. Find \(\mathrm { E } ( S )\) and \(\operatorname { Var } ( S )\).
  2. A blue biased tetrahedral die is rolled. The number, \(Y\), on the face on which it lands has the probability distribution given by $$\mathrm { P } ( Y = y ) = \begin{cases} \frac { y } { 20 } & y = 1,2 \text { and } 3
    \frac { 7 } { 10 } & y = 4 \end{cases}$$ The random variable \(T\) is the value obtained when the number on the face on which it lands is multiplied by 3 . Calculate \(\mathrm { E } ( T )\) and \(\operatorname { Var } ( T )\).
  3. Calculate:
    1. \(\mathrm { P } ( X > 1 )\);
    2. \(\mathrm { P } ( X + T \leqslant 9\) and \(X > 1 )\);
    3. \(\mathrm { P } ( X + T \leqslant 9 \mid X > 1 )\).