The probability distribution is explicitly provided in a table or formula, and the question asks to calculate E(X) directly using the standard formula.
18 questions
| x | 0 | 1 | 2 | 3 |
| \(\mathrm { P } ( \mathrm { X } = \mathrm { x } )\) | 0.1 | 0.2 | 0.3 | 0.4 |
| \(r\) | 0 | 1 | 2 | 3 | 4 | 5 |
| \(\mathrm { P } ( X = r )\) | \(\frac { 1 } { 6 }\) | \(\frac { 5 } { 18 }\) | \(\frac { 2 } { 9 }\) | \(\frac { 1 } { 6 }\) | \(\frac { 1 } { 9 }\) | \(\frac { 1 } { 18 }\) |
| \(r\) | 0 | 1 | |||
| \(\mathrm { P } ( X = r )\) | \(\frac { 3 } { 8 }\) | \(\frac { 1 } { 3 }\) | \(\frac { 1 } { 4 }\) | 0 | \(\frac { 1 } { 24 }\) |
| \(x\) | 0 | 1 | 2 | 3 |
| \(\mathrm { P } ( X = x )\) | \(\frac { 1 } { 3 }\) | \(\frac { 1 } { 2 }\) | \(\frac { 1 } { 12 }\) | \(\frac { 1 } { 12 }\) |
| \(r\) | 0 | 1 | 2 | 3 | 4 | 5 |
| \(\mathrm { P } ( X = r )\) | \(\frac { 1 } { 6 }\) | \(\frac { 5 } { 18 }\) | \(\frac { 2 } { 9 }\) | \(\frac { 1 } { 6 }\) | \(\frac { 1 } { 9 }\) | \(\frac { 1 } { 18 }\) |
| \(s\) | 0 | 1 | 2 | 4 | 5 |
| \(\mathrm { P } ( S = s )\) | 0.2 | 0.2 | 0.1 | 0.3 | 0.2 |
| \(x\) | 0 | 3 | 6 |
| \(\mathrm { P } ( X = x )\) | \(\frac { 1 } { 12 }\) | \(\frac { 2 } { 3 }\) | \(\frac { 1 } { 4 }\) |
| END |
| \(y\) | \({ } ^ { - } 2\) | \({ } ^ { - } 1\) | 0 | 1 | 2 |
| \(\mathrm { P } ( Y = y )\) | 0.1 | 0.15 | 0.2 | 0.3 | 0.25 |
| \(\boldsymbol { x }\) | 1 | 2 | 3 | 4 |
| \(\mathbf { P } ( \boldsymbol { X } = \boldsymbol { x } )\) | 0.2 | 0.1 | 0.4 | 0.3 |
| \(\boldsymbol { r }\) | 1 | 2 | 3 | 4 |
| \(\mathbf { P } ( \boldsymbol { R } = \boldsymbol { r } )\) | \(\frac { 7 } { 16 }\) | \(\frac { 5 } { 16 }\) | \(\frac { 3 } { 16 }\) | \(\frac { 1 } { 16 }\) |
| \(\boldsymbol { y }\) | 5 | 15 | 25 | 35 |
| \(\mathbf { P } ( \boldsymbol { Y } = \boldsymbol { y } )\) | 0.1 | 0.2 | 0.3 | 0.4 |
| \(\boldsymbol { r }\) | \(\leqslant 2\) | 3 | 4 | 5 | 6 | 7 | 8 | \(\geqslant 9\) |
| \(\mathbf { P } ( \boldsymbol { R } = \boldsymbol { r } )\) | 0 | 0.1 | 0.2 | 0.3 | 0.25 | 0.1 | 0.05 | 0 |
| \(\boldsymbol { s }\) | \(\leqslant 2\) | 3 | 4 | 5 | 6 | 7 | 8 | \(\geqslant 9\) |
| \(\mathbf { P } ( \boldsymbol { S } = \boldsymbol { s } )\) | 0 | 0.15 | 0.4 | 0.3 | 0.1 | 0.03 | 0.02 | 0 |
| \(r\) | 0 | 1 | 2 | 3 | 4 | 5 |
| \(\mathrm { P } ( X = r )\) | \(\frac { 11 } { 30 }\) | \(\frac { 3 } { 8 }\) | \(\frac { 1 } { 6 }\) | \(\frac { 1 } { 12 }\) | 0 | \(\frac { 1 } { 120 }\) |
| \(r\) | 2 | 3 | 4 | 5 | 6 | 7 |
| \(\mathrm { P } ( X = r )\) | 0.03 | 0.07 | 0.27 | 0.49 | 0.13 | 0.01 |
| \(x\) | 0 | 1 | 2 | 3 | 4 |
| \(\mathrm { P } ( X = x )\) | 0.05 | 0.2 | 0.5 | 0.2 | 0.05 |
| \(r\) | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| \(\mathrm { P } ( \mathrm { X } = \mathrm { r } )\) | 0.05 | 0.1 | 0.25 | 0.3 | 0.15 | 0.1 | 0.05 |
| \(r\) | 2 | 3 | 4 | 5 | 6 | 7 |
| \(\mathrm { P } ( X = r )\) | 0.03 | 0.07 | 0.27 | 0.49 | 0.13 | 0.01 |