A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Harmonic Form
Q7
CAIE P2 2014 November — Question 7
4 marks
Exam Board
CAIE
Module
P2 (Pure Mathematics 2)
Year
2014
Session
November
Marks
4
Topic
Harmonic Form
7
Express \(5 \cos \theta - 12 \sin \theta\) in the form \(R \cos ( \theta + \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\), giving the value of \(\alpha\) correct to 2 decimal places.
Hence solve the equation \(5 \cos \theta - 12 \sin \theta = 8\) for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\).
Find the greatest possible value of $$7 + 5 \cos \frac { 1 } { 2 } \phi - 12 \sin \frac { 1 } { 2 } \phi$$ as \(\phi\) varies, and determine the smallest positive value of \(\phi\) for which this greatest value occurs.
[0pt] [4]
This paper
(7 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
4