CAIE P2 2014 November — Question 7 4 marks

Exam BoardCAIE
ModuleP2 (Pure Mathematics 2)
Year2014
SessionNovember
Marks4
TopicHarmonic Form

7
  1. Express \(5 \cos \theta - 12 \sin \theta\) in the form \(R \cos ( \theta + \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\), giving the value of \(\alpha\) correct to 2 decimal places.
  2. Hence solve the equation \(5 \cos \theta - 12 \sin \theta = 8\) for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\).
  3. Find the greatest possible value of $$7 + 5 \cos \frac { 1 } { 2 } \phi - 12 \sin \frac { 1 } { 2 } \phi$$ as \(\phi\) varies, and determine the smallest positive value of \(\phi\) for which this greatest value occurs.
    [0pt] [4]