CAIE P2 2014 November — Question 6

Exam BoardCAIE
ModuleP2 (Pure Mathematics 2)
Year2014
SessionNovember
TopicFixed Point Iteration

6
\includegraphics[max width=\textwidth, alt={}, center]{c703565b-8aa8-424b-9684-6592d4effdf8-3_597_931_260_607} The polynomial \(\mathrm { p } ( x )\) is defined by $$\mathrm { p } ( x ) = x ^ { 4 } - 3 x ^ { 3 } + 3 x ^ { 2 } - 25 x + 48 .$$ The diagram shows the curve \(y = \mathrm { p } ( x )\) which crosses the \(x\)-axis at ( \(\alpha , 0\) ) and ( 3,0 ).
  1. Divide \(\mathrm { p } ( x )\) by a suitable linear factor and hence show that \(\alpha\) is a root of the equation \(x = \sqrt [ 3 ] { } ( 16 - 3 x )\).
  2. Use the iterative formula \(x _ { n + 1 } = \sqrt [ 3 ] { } \left( 16 - 3 x _ { n } \right)\) to find \(\alpha\) correct to 2 decimal places. Give the result of each iteration to 4 decimal places.