AQA S1 2007 June — Question 7

Exam BoardAQA
ModuleS1 (Statistics 1)
Year2007
SessionJune
TopicNormal Distribution
TypeDirect comparison of probabilities

7
  1. Electra is employed by E \& G Ltd to install electricity meters in new houses on an estate. Her time, \(X\) minutes, to install a meter may be assumed to be normally distributed with a mean of 48 and a standard deviation of 20 . Determine:
    1. \(\mathrm { P } ( X < 60 )\);
    2. \(\mathrm { P } ( 30 < X < 60 )\);
    3. the time, \(k\) minutes, such that \(\mathrm { P } ( X < k ) = 0.9\).
  2. Gazali is employed by E \& G Ltd to install gas meters in the same new houses. His time, \(Y\) minutes, to install a meter has a mean of 37 and a standard deviation of 25 .
    1. Explain why \(Y\) is unlikely to be normally distributed.
    2. State why \(\bar { Y }\), the mean of a random sample of 35 gas meter installations, is likely to be approximately normally distributed.
    3. Determine \(\mathrm { P } ( \bar { Y } > 40 )\).