Edexcel C4 (Core Mathematics 4)

Question 1
View details
  1. The function \(f\) is given by
$$f ( x ) = \frac { 3 ( x + 1 ) } { ( x + 2 ) ( x - 1 ) } , x \in \mathbb { R } , x \neq - 2 , x \neq 1$$
  1. Express \(\mathrm { f } ( x )\) in partial fractions.
  2. Hence, or otherwise, prove that \(\mathrm { f } ^ { \prime } ( x ) < 0\) for all values of \(x\) in the domain.
Question 2
View details
2. The curve \(C\) is described by the parametric equations $$x = 3 \cos t , \quad y = \cos 2 t , \quad 0 \leq t \leq \pi .$$
  1. Find a cartesian equation of the curve \(C\).
  2. Draw a sketch of the curve \(C\).
Question 3
View details
3. Use the substitution \(x = \sin \theta\) to show that, for \(| x | \leq 1\), $$\int \frac { 1 } { \left( 1 - x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } } \mathrm {~d} x = \frac { x } { \left( 1 - x ^ { 2 } \right) ^ { \frac { 1 } { 2 } } } + c \text {, where } c \text { is an arbitrary constant. }$$
Question 4
View details
  1. A measure of the effective voltage, \(M\) volts, in an electrical circuit is given by
$$M ^ { 2 } = \int _ { 0 } ^ { 1 } V ^ { 2 } \mathrm {~d} t$$ where \(V\) volts is the voltage at time \(t\) seconds. Pairs of values of \(V\) and \(t\) are given in the following table.
\(t\)00.250.50.751
\(V\)- 4820737- 161- 29
\(V ^ { 2 }\)
Use the trapezium rule with five values of \(V ^ { 2 }\) to estimate the value of \(M\).
(6)
Question 5
View details
5. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{964070ca-a2c0-4935-8a5b-f1f656495f2e-3_771_1049_251_477}
\end{figure} Figure 1 shows part of the curve with equation \(y = 1 + \frac { 1 } { 2 \sqrt { x } }\). The shaded region \(R\), bounded by the curve, that \(x\)-axis and the lines \(x = 1\) and \(x = 4\), is rotated through \(360 ^ { \circ }\) about the \(x\)-axis. Using integration, show that the volume of the solid generated is \(\pi \left( 5 + \frac { 1 } { 2 } \ln 2 \right)\).
(8)
Question 6
View details
6. Liquid is poured into a container at a constant rate of \(30 \mathrm {~cm} ^ { 3 } \mathrm {~s} ^ { - 1 }\). At time \(t\) seconds liquid is leaking from the container at a rate of \(\frac { 2 } { 15 } V \mathrm {~cm} ^ { 3 } \mathrm {~s} ^ { - 1 }\), where \(V \mathrm {~cm} ^ { 3 }\) is the volume of liquid in the container at that time.
  1. Show that $$- 15 \frac { \mathrm {~d} V } { \mathrm {~d} t } = 2 V - 450$$ Given that \(V = 1000\) when \(t = 0\),
  2. find the solution of the differential equation, in the form \(V = \mathrm { f } ( t )\).
  3. Find the limiting value of \(V\) as \(t \rightarrow \infty\).
Question 7
View details
7. The curve \(C\) has equation \(y = \frac { x } { 4 + x ^ { 2 } }\).
  1. Use calculus to find the coordinates of the turning points of \(C\). Using the result \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \frac { 2 x \left( x ^ { 2 } - 12 \right) } { \left( 4 + x ^ { 2 } \right) ^ { 3 } }\), or otherwise,
  2. determine the nature of each of the turning points.
  3. Sketch the curve \(C\).
Question 8
View details
8. (i) Given that \(\cos ( x + 30 ) ^ { \circ } = 3 \cos ( x - 30 ) ^ { \circ }\), prove that tan \(x ^ { \circ } = - \frac { \sqrt { 3 } } { 2 }\).
(ii) (a) Prove that \(\frac { 1 - \cos 2 \theta } { \sin 2 \theta } \equiv \tan \theta\).
(b) Verify that \(\theta = 180 ^ { \circ }\) is a solution of the equation \(\sin 2 \theta = 2 - 2 \cos 2 \theta\).
(c) Using the result in part (a), or otherwise, find the other two solutions, \(0 < \theta < 360 ^ { \circ }\), of the equation using \(\sin 2 \theta = 2 - 2 \cos 2 \theta\).
Question 9
View details
9. The equations of the lines \(l _ { 1 }\) and \(l _ { 2 }\) are given by $$\begin{array} { l l } l _ { 1 } : & \mathbf { r } = \mathbf { i } + 3 \mathbf { j } + 5 \mathbf { k } + \lambda ( \mathbf { i } + 2 \mathbf { j } - \mathbf { k } ) ,
l _ { 2 } : & \mathbf { r } = - 2 \mathbf { i } + 3 \mathbf { j } - 4 \mathbf { k } + \mu ( 2 \mathbf { i } + \mathbf { j } + 4 \mathbf { k } ) , \end{array}$$ where \(\lambda\) and \(\mu\) are parameters.
  1. Show that \(l _ { 1 }\) and \(l _ { 2 }\) intersect and find the coordinates of \(Q\), their point of intersection.
  2. Show that \(l _ { 1 }\) is perpendicular to \(l _ { 2 }\). The point \(P\) with \(x\)-coordinate 3 lies on the line \(l _ { 1 }\) and the point \(R\) with \(x\)-coordinate 4 lies on the line \(l _ { 2 }\).
  3. Find, in its simplest form, the exact area of the triangle \(P Q R\). END