AQA C4 2011 January — Question 7

Exam BoardAQA
ModuleC4 (Core Mathematics 4)
Year2011
SessionJanuary
TopicDifferential equations

7
    1. Solve the differential equation \(\frac { \mathrm { d } x } { \mathrm {~d} t } = \sqrt { x } \sin \left( \frac { t } { 2 } \right)\) to find \(x\) in terms of \(t\).
    2. Given that \(x = 1\) when \(t = 0\), show that the solution can be written as $$x = ( a - \cos b t ) ^ { 2 }$$ where \(a\) and \(b\) are constants to be found.
  1. The height, \(x\) metres, above the ground of a car in a fairground ride at time \(t\) seconds is modelled by the differential equation \(\frac { \mathrm { d } x } { \mathrm {~d} t } = \sqrt { x } \sin \left( \frac { t } { 2 } \right)\). The car is 1 metre above the ground when \(t = 0\).
    1. Find the greatest height above the ground reached by the car during the ride.
    2. Find the value of \(t\) when the car is first 5 metres above the ground, giving your answer to one decimal place.