AQA C4 2011 January — Question 6

Exam BoardAQA
ModuleC4 (Core Mathematics 4)
Year2011
SessionJanuary
TopicTrig Equations

6
    1. Given that \(\tan 2 x + \tan x = 0\), show that \(\tan x = 0\) or \(\tan ^ { 2 } x = 3\).
    2. Hence find all solutions of \(\tan 2 x + \tan x = 0\) in the interval \(0 ^ { \circ } < x < 180 ^ { \circ }\).
      (l mark)
    1. Given that \(\cos x \neq 0\), show that the equation $$\sin 2 x = \cos x \cos 2 x$$ can be written in the form $$2 \sin ^ { 2 } x + 2 \sin x - 1 = 0$$
    2. Show that all solutions of the equation \(2 \sin ^ { 2 } x + 2 \sin x - 1 = 0\) are given by \(\sin x = \frac { \sqrt { 3 } - 1 } { p }\), where \(p\) is an integer.