- (a) Prove that
$$\frac { 1 - \cos 2 \theta } { \sin 2 \theta } \equiv \tan \theta , \quad \theta \neq \frac { n \pi } { 2 } , \quad n \in \mathbb { Z }$$
(b) Solve, giving exact answers in terms of \(\pi\),
$$2 ( 1 - \cos 2 \theta ) = \tan \theta , \quad 0 < \theta < \pi$$