9.
\begin{figure}[h]
\captionsetup{labelformat=empty}
\caption{Figure 3}
\includegraphics[alt={},max width=\textwidth]{438fda08-a7c2-409b-afde-17f6f85b5183-5_558_1115_251_306}
\end{figure}
Figure 3 shows a sketch of the curve with equation \(y = \mathrm { f } ( x ) , x \geq 0\). The curve meets the coordinate axes at the points \(( 0 , c )\) and \(( d , 0 )\).
In separate diagrams sketch the curve with equation
- \(y = \mathrm { f } ^ { - 1 } ( x )\),
- \(y = 3 \mathrm { f } ( 2 x )\).
(3)
Indicate clearly on each sketch the coordinates, in terms of \(c\) or \(d\), of any point where the curve meets the coordinate axes.
Given that f is defined by
$$\mathrm { f } : x \mapsto 3 \left( 2 ^ { - x } \right) - 1 , x \in \mathbb { R } , x \geq 0 ,$$ - state
- the value of \(c\),
- the range of \(f\).
- Find the value of \(d\), giving your answer to 3 decimal places.
The function g is defined by
$$\mathrm { g } : x \mapsto \log _ { 2 } x , x \in \mathbb { R } , x \geq 1 .$$
- Find \(\mathrm { fg } ( x )\), giving your answer in its simplest form.