A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Stats And Pure
Partial Fractions
Q1
Edexcel C3 — Question 1
Exam Board
Edexcel
Module
C3 (Core Mathematics 3)
Topic
Partial Fractions
Type
Simplify to single fraction
Use the derivatives of \(\sin x\) and \(\cos x\) to prove that the derivative of \(\tan x\) is \(\sec ^ { 2 } x\).
The function f is given by \(\mathrm { f } : x \propto 2 + \frac { 3 } { x + 2 } , x \in \mathbb { R } , x \neq - 2\).
Express \(2 + \frac { 3 } { x + 2 }\) as a single fraction.
Find an expression for \(\mathrm { f } ^ { - 1 } ( x )\).
Write down the domain of \(\mathrm { f } ^ { - 1 }\).
(a) Express as a fraction in its simplest form
$$\frac { 2 } { x - 3 } + \frac { 13 } { x ^ { 2 } + 4 x - 21 }$$
Hence solve $$\frac { 2 } { x - 3 } + \frac { 13 } { x ^ { 2 } + 4 x - 21 } = 1$$
This paper
(6 questions)
View full paper
Q1
Q4
Q6
Q7
Q8
Q9