Hence solve the equation
$$\frac { 1 - \sin \left( 2 \theta - 30 ^ { \circ } \right) } { \cos \left( 2 \theta - 30 ^ { \circ } \right) } + \frac { \cos \left( 2 \theta - 30 ^ { \circ } \right) } { 1 - \sin \left( 2 \theta - 30 ^ { \circ } \right) } = \tan ^ { 2 } \left( 2 \theta - 30 ^ { \circ } \right) - 2$$
giving the values of \(\theta\) to the nearest degree in the interval \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
[0pt]
[2 marks]
\includegraphics[max width=\textwidth, alt={}]{57412ec0-ad97-4418-8ba8-93f1f7d8aac1-16_1517_1709_1190_153}
\includegraphics[max width=\textwidth, alt={}]{57412ec0-ad97-4418-8ba8-93f1f7d8aac1-20_2489_1730_221_139}