AQA C3 2014 June — Question 2 6 marks

Exam BoardAQA
ModuleC3 (Core Mathematics 3)
Year2014
SessionJune
Marks6
TopicFixed Point Iteration

2 A curve has equation \(y = 2 \ln ( 2 \mathrm { e } - x )\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Find an equation of the normal to the curve \(y = 2 \ln ( 2 \mathrm { e } - x )\) at the point on the curve where \(x = \mathrm { e }\).
    [0pt] [4 marks]
  3. The curve \(y = 2 \ln ( 2 \mathrm { e } - x )\) intersects the line \(y = x\) at a single point, where \(x = \alpha\).
    1. Show that \(\alpha\) lies between 1 and 3 .
    2. Use the recurrence relation $$x _ { n + 1 } = 2 \ln \left( 2 \mathrm { e } - x _ { n } \right)$$ with \(x _ { 1 } = 1\) to find the values of \(x _ { 2 }\) and \(x _ { 3 }\), giving your answers to three decimal places.
    3. Figure 1, on the opposite page, shows a sketch of parts of the graphs of \(y = 2 \ln ( 2 \mathrm { e } - x )\) and \(y = x\), and the position of \(x _ { 1 }\). On Figure 1, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of \(x _ { 2 }\) and \(x _ { 3 }\) on the \(x\)-axis.
      [0pt] [2 marks] \section*{(c)(iii)} \begin{figure}[h]
      \captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{57412ec0-ad97-4418-8ba8-93f1f7d8aac1-05_864_1284_1802_386}
      \end{figure}